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Abstract
Various interactions can play a role between the mesoscopic dust grains of a
complex plasma. We study a system composed of dust grains that have both
an electric charge and a permanent magnetic dipole moment. It is assumed
that the grains occupy lattice sites, as dictated by their Coulomb interaction. In
addition, they possess a spin degree of freedom (orientation of magnetic dipole
moment) that is not constrained by the Coulomb interaction, thus allowing
for the possibility of equilibrium orientational ordering and ‘wobbling’ about
the equilibrium orientations. As a result, collective modes develop. We
identify in-plane and out-of-plane wobbling modes and discuss their dispersion
characteristics both in the ferromagnetic and in the anti-ferromagnetic ground
state.

PACS numbers: 52.27.Lw, 52.27.Gr, 52.35.Lv, 75.30.Ds

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Historically, the problem of interacting dipoles that are fixed on lattice sites dates back several
decades. Luttinger and Tisza published their seminal paper in 1946 [1], and since then
investigations into one-, two- and three-dimensional arrays of dipoles have been extensive
[2–4]. Studies of two-dimensional lattices have focused on the ground state configuration of
the dipoles, with in-plane orientation [2, 5, 6], and its associated perturbations and excitations
[3, 4, 7]. These latter works were directed towards understanding the properties of thin
magnetic films (TMF). These systems consist of microscopic magnetic dipoles, the dynamics
of which are well approximated by regarding the dipoles as two-dimensional classical vectors
with an ability to rotate within the plane. The interaction includes the exchange interaction
and the classical dipole–dipole potential. Recent collaborative experiments on complex dusty
plasmas have led to the creation of two-dimensional (2D) lattices of mesoscopic grains [8, 9].
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This has raised the possibility of creating and studying such lattices consisting of grains
endowed with magnetic dipole moments, whose properties (both ground state configuration
and collective excitations) may be accessible to direct experimental observation. In this paper
we survey the possible ground state configurations and predict wave-like collective excitations,
which we will refer to as wobbling modes. A preliminary study was given in [10]. These
collective modes may have both in-plane and out-of-plane polarizations. The description of
the ground state configurations is based on TMF investigations in the literature; the formalism
for predicting the in-plane wobbling modes borrows heavily from the analysis of the spin
wave excitations in TMF systems, although the physical interpretations of the processes are
completely different. To the best of our knowledge, the out-of-plane wobbling modes have no
analogue in earlier investigations. We trust that our predictions will motivate new experiments
on this subject that in turn could lead to the discovery of new physical effects.

2. Magnetic dipoles in a complex plasma

We consider a strongly interacting 2D complex plasma in the crystalline state. We assume that
the grains are ferromagnetic, i.e. they carry, in addition to their electric charge, a permanent
magnetic dipole moment. Typical values of parameters for a complex plasma of ferromagnetic
grains can be calculated from data given in [9, 11].

µ ≈ 1010µB, magnetic dipole moment (1)

a ≈ 10−4 m, lattice constant (2)

d ≈ 10−6 m, particle diameter (3)

I ≈ 10−26 kg m2, moment of inertia (4)

Z ≈ 103−104, particle charge state (5)

m ≈ 10−13 kg, particle mass. (6)

Based on these values, we estimate the ratio of the magnetic potential energy Um to the
electrostatic energy Ue to be

Um/Ue = µ2

a3

/
Z2e2

a
≈ 10−2−10−4. (7)

These estimates indicate that the electrostatic interaction remains dominant, and in particular
the electrostatic repulsion determines the lattice structure. Screening by the surrounding
plasma particles leads to a Yukawa-type interaction, which then generates a 2D hexagonal
crystal. As to a possible square lattice structure, the electrostatic monopole interaction
by itself would not generate such a structure. Indeed, though 2D lattices of dust grains
interacting via a screened Coulomb force have been created in several laboratory experiments
(e.g. [12–14]), such a structure has never been observed. Nevertheless, whether the lattice
structure does or does not remain unaffected by the magnetic interaction is an issue that awaits
further clarification. Thus we consider both square and hexagonal lattices below.

3. Ground state

The ground state problem is similar to its TMF analogue. The Hamiltonian is that of a system
of classical magnetic dipoles (Sα) interacting through the dipole–dipole potential Mαβ(r)
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without exchange interaction:

V = −1

2

µ2

a3

∑
i,j

∑
α,β=x,y,z

Mαβ(ri − rj)S
α
i S

β

j (8)

Mαβ(r) = a3

r3

(
3
rαrβ

r2
− δαβ

)
. (9)

The ground state configuration for dipoles on a square lattice is well known to be
anti-ferromagnetic (AF) (e.g. [7]). This ground state is continuously degenerate, with four
neighbouring dipoles forming an AF vortical structure, where the vortical angle does not affect
the ground state energy. The ground state configuration for dipoles on a hexagonal lattice is
well known to be ferromagnetic, continuously degenerate with respect to the magnetization
angle (e.g. [3]). However, both of these degeneracies are broken at finite—even very small—
temperature [15, 16], because of the requirement of the minimization of the free energy. This
leads to the AF columnar alignment as the minimum free-energy state for the square lattice,
and the ferromagnetic next-nearest neighbour alignment for the hexagonal lattice.

4. Collective excitations

At finite temperature, the dipoles will oscillate (‘wobble’) around their equilibrium
orientations, both in the plane and out of the plane. A coherent superposition of these
oscillations results in collective wobbling mode excitations. In the Hamiltonian for the
system the interaction part is the dipole–dipole interaction, while the kinetic term describes
the oscillation energy of the dipole particles. In order to analyse the collective modes, we
consider an equilibrium configuration with the dipoles aligned (either anti-ferromagnetically
or ferromagnetically) along the x-axis. (In general the structure can be described in terms
of sublattices; in the AF case a two-sublattice is used, with the unit cell consisting of two
neighbouring particles, 1 and 2.) We then expand both the kinetic and potential energy terms to
second order in the angular displacement, ψα , to generate a quadratic Hamiltonian. Adopting
the in-plane and out-of-plane angles, ψy and ψz, respectively, as coordinates, and introducing
the collective coordinates

ψA,α
q = 1√

N

∑
i

ψα eiq·rA
i (10)

(the index A = 1, 2 enumerating sublattice positions within the unit cell) we obtain

H = 1

2
I

∑
q

ψ̇A,α
q ψ̇

A,α
−q +

1

2

µ2

a3

∑
q

ψA,α
q FAB,αβ(q)ψ

B,β
−q . (11)

The elements of the F matrix are expressible in terms of the elements of the primitive
dynamical matrix M(q) for a 2D Coulomb lattice Mαβ(q) = ∑

i M
αβ(ri ) eiq·ri [17]. The

eigenvalues of the F matrix, λ(q), are then easily worked out, and they give the frequencies of
the collective modes of the system:

ω(q) =
[

µ2

Ia3
λ(q)

] 1
2

. (12)

For the AF square lattice the two sublattices generate four modes: in-plane, in-phase
(+, in); in-plane, out-of-phase (−, in); out-of-plane, in-phase (+, out); and out-of-plane,
out-of-phase (−, out).
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Figure 1. Dispersions for the wobbling modes (in units of µ2

Ia3 ) for (a) square lattice in-plane ;
(b) square lattice out-of-plane; (c) hexagonal lattice in-plane; (d ) hexagonal lattice out-of-plane.
nsquare = nhexagonal, thus asquare �= ahexagonal.

λ+
in(q) = Mxx

11 (0) − Mxx
12 (0) − (

M
yy

11 (q) + M
yy

12 (q)
)

(13)

λ−
in(q) = Mxx

11 (0) − Mxx
12 (0) − (

M
yy

11 (q) − M
yy

12 (q)
)

(14)

λ+
out(q) = Mxx

11 (0) − Mxx
12 (0) − (

Mzz
11(q) + Mzz

12(q)
)

(15)

λ−
out(q) = Mxx

11 (0) − Mxx
12 (0) − (

Mzz
11(q) − Mzz

12(q)
)
. (16)

For the ferromagnetic hexagonal lattice there is no sub-lattice and only the in-phase mode
exists.

λ+
in(q) = Mxx(0) − Myy(q) (17)

λ+
out(q) = Mxx(0) − Mzz(q). (18)

5. Wobbling modes

The dispersions of the wobbling modes are shown in figure 1, both for the square and hexagonal
lattices. Frequencies are given in units of µ2

Ia3 . Note that the ferromagnetic in-plane mode
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is a Goldstone mode: ω → 0 for q → 0. In the AF case, the in-plane, in-phase mode
behaves as a quasi-Goldstone mode: ω → 0 for qxa → π, qy → 0. The existence of
Goldstone modes is the consequence of the continuous degeneracies of the ground states [18].
The out-of-plane modes are always gapped modes. The in-plane modes are in one-to-one
formal correspondence with the low-lying spin wave excitations of the TMF systems [3, 4, 7],
although they obviously represent a completely different physical phenomenon, since the
dipoles are associated with a massive object with a moment of inertia. For this reason, the
out-of-plane modes do not appear to have an analogue in other physical systems such as TMF.

6. Summary and discussion

In this paper, we have established the existence of novel in-plane and out-of-plane wobbling
modes in a 2D lattice of mesoscopic grains endowed with a permanent magnetic dipole
moment, in addition to an electric charge. Since the grain temperature is of the order of room
temperature, the wobbling modes would be expected to be thermally excited. Interaction with
the surrounding plasma and neutral gas may further excite these wobbling modes. We hope that
our findings will stimulate related experimental efforts in laboratory complex plasmas. There
are intriguing issues associated with the experimental realization of the system studied in this
paper, such as the effect of non-electrostatic forces or thermal motion on the wobbling of the
grains, as well as how to diagnose these wobbling modes.
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